Dielectric Behaviour of Ice Microcrystals: A Study Versus Temperature

Author:

Boned Christian,Lagourette Bernard,Clausse Marc

Abstract

AbstractDispersions of ice microcrystals were obtained from the breakdown of supercooling of water-in-oil type emulsions whose disperse phase was either resin-exchanged water or aqueous solutions of NH4Cl. Their complex permittivity ε⋆ = ε´–jε˝ was studied versus temperatureT,up to the melting point of ice microcrystals, by means of an automatically balancing admittance bridge (General Radio 1680 A) working at 400 Hz and 1 kHz, The plots ε´(T), ε˝(T) and ε˝(ε´) reveal that these systems exhibit two distinct dielectric relaxations located on either side of a temperatureTmwhich was found to be equal to about — 20°C in the case of water and lower than — 20°C in the case of aqueous solutions of NH4Cl. The relaxation located in the lower temperature range arises from the Debye dipolar absorption of ice while the other one could be related to structural changes occurring within the lattice of ice asTapproaches its melting point. These results are consistent with those obtained by investigating versus frequency the dielectric behaviour of ice monocrystals at discrete sub-zero temperatures close to their melting point.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3