Abstract
Abstract
Creep tests were performed in torsion and torsion–compression on polycrystalline ice at temperatures near the melting point. Syntectonic recrystallization occurs at strains of the order of 2–3%, leading to a rapid increase in strain-rate. It is shown that the increase of creep-rate during tertiary creep arises from the development of fabrics favouring the glide on basal planes but also from the softening processes associated with recrystallization. The c-axis fabric of recrystallized ice developed in simple shear consists of two-maxima, one at the pole of the permanent shear plane and the other between the normal of the second plane of maximum shearing stress and the principal direction of compression. In torsion–compression, a three- or four-maximum fabric is formed according to the intensity of different components of the stress tensor. The maxima are clustered around the principal direction of compression. Processes of fabric formation are discussed. The experimentally developed fabrics are probably produced by the strain-induced recrystallization, for which the driving force is provided by differences in stored plastic strain energy. However the degree of preferred orientation of ice c-axes must be a function of the total strain when syntectonic recrystallization becomes less important. In this case, fabrics are principally formed by plastic flow and a steady state is obtained for very high strains.
Publisher
Cambridge University Press (CUP)
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献