Deuterium, Tritium and Gross-Beta-Activity Investigations on Alpine Glaciers (Ötztal Alps)

Author:

Ambach W.,Eisner H.,Elsässer M.,Löschhorn U.,Moser H.,Rauert W.,Stichler W.

Abstract

By measuring the deuterium contents of stream water, spring water and melt water, as well as ice and snow samples, the mean contributions to melt water in the run-off from Hintereisferner have been estimated: that of melt water being 60% and that of spring water being 40% in the months of July to September. Spring water is characterized by very low deuterium contents, whereas ice-melt water and snow-melt water in the summer were found to have about the same, rather high deuterium content. The deuterium content in the run-off was subjected to considerable seasonal fluctuations owing to the changing shares in melt water and spring water. The deuterium contents in individual glacier run-offs show similar seasonal fluctuations and are furthermore characterized by a parallel shift of the deuterium concentrations, because of the different altitudes of catchment areas. Differences in the mean altitudes of catchment areas were estimated for the winter and summer discharges on the basis of the isotope altitude effect. The seasonal fluctuations of the tritium contents in glacier discharges are caused mainly by the melt water from glacier ice, which contains practically no tritium. Minimum values of tritium content in the runoff were thus found during the period of maximum ice ablation. The mean residence time of the base-flow in the ground-water system of a catchment area was roughly estimated to be a few years on account of the tritium content in the winter run-off and in the precipitations of past years. Profiles of the gross beta activity in firn cores, despite a reduced atmospheric fall-out during the past years, clearly show activity peaks in summer horizons that are suitable for net accumulation analyses. A characteristic peak in the profile of the tritium content which may be attributed to the net accumulation of 1962/63 is well suited for use as a reference horizon.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference16 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3