Snow-Slope Stabili1y – A Probabilistic Approach

Author:

Conway H.,Abrahamson J.

Abstract

Abstract Measurements of snow properties across and down snow slopes have been used to calculate a safety margin — the difference between the basal shear strength and the applied static stress. Areas of basal deficit exist when the applied shear stress exceeds the basal shear strength (the safety margin is negative), and basal areas are pinned when the safety margin is positive. As the size of deficit increases, stresses within the overlying slab also increase, and these may be sufficient to cause an avalanche. Measurements made on five slopes (four of which had avalanched) were characterized by considerable spatial variability, and the safety margin has been treated as a random function which varies over the slope. Statistical models of Vanmarcke (1977[a], 1983) have been applied to determine the most likely size of deficit required for avalanching (95% confidence). In one case, an avalanche occurred when the length of deficit was only 2.9 m, and in the other cases the length was always less than 7 m. This size of deficit is small compared with the total area of many avalanche slopes which suggests that avalanches initiate from small zones of deficit, and makes it difficult to locate a deficit with just a few tests. The optimum sampling interval and number of tests required to yield an adequate estimate of the statistical parameters of the safety margin are also discussed.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Snow instability patterns at the scale of a small basin;Journal of Geophysical Research: Earth Surface;2016-02

2. The critical size of macroscopic imperfections in dry snow slab avalanche initiation;Journal of Geophysical Research;2011-07-22

3. In situ and photographic measurements of avalanche crown transects;Cold Regions Science and Technology;2010-11

4. Assessing changes in the spatial variability of the snowpack fracture propagation propensity over time;Cold Regions Science and Technology;2009-05

5. A scale-invariant model for snow slab avalanches;Journal of Statistical Mechanics: Theory and Experiment;2009-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3