Time-Dependent Surface Elevation of an ice Slope

Author:

Hutter Kolumban

Abstract

AbstractBy introducing a coordinate stretching, the governing field equations of the creep flow of a non-Newtonian viscous medium down a uniform slope are solved to determine the differential equation describing the propagation of long surface waves caused by initial disturbances and/or time-dependent accumulation-rate The differential equation for the surface wave depends on the flow law of the non-Newtonian fluid, the boundary condition at the ice-bedrock interface, the bedrock topography and the thickness–wavelength ratio. For moderately long waves and small elevation above the mean thickness the results agree in their essentials with those of the kinematic wave theory and the forward wave equation with a diffusion term is derived, but when improving this by allowing higher elevations the Burger's equation and even more complex equations are obtained. To derive these results Glen’s flow law must be generalized to avoid infinitely fast changes in stress deviators close to zero Strain-rates, The range of applicability of the various equations is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shallow flow of an inhomogeneous incompressible fluid down an inclined plane;Theoretical and Computational Fluid Dynamics;2019-03-11

2. Shallow flows of generalised Newtonian fluids on an inclined plane;Journal of Engineering Mathematics;2014-11-01

3. The microstructure of polar ice. Part II: State of the art;Journal of Structural Geology;2014-04

4. Transmission of basal variability to a glacier surface;Journal of Geophysical Research: Solid Earth;2003-05

5. Modelling the Flow of Glaciers and Ice Sheets;Continuum Mechanics and Applications in Geophysics and the Environment;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3