Microwave Emissivity and Accumulation Rate of Polar Firn

Author:

Jay Zwally H.

Abstract

Abstract Radiative transfer theory is formulated to permit a meaningful definition of emissivity for bulk emitting media such as snow. The emissivity in the Rayleigh-Jeans approximation is then the microwave brightness temperature T B divided by an effective physical temperature T. The T is an average of the physical temperature, T(z), weighted by a radiative transfer function ƒ(z). Similarly, where e(z) is the local emittance. An approximate ƒ(z) is used to determine analytically the effects of various absorption coefficients, of scattering coefficients that vary with depth, and of the seasonal variation of T(z). It is shown that a mean emissivity, which is equal to the mean annual T B divided by the mean annual surface temperature T m, is a useful quantity for comparing theory and observations. Snow-crystal size measurements, r(z), at seven locations in Greenland and Antarctica are used to determine the Mie/Rayleigh scattering coefficient γs (z and to calculate the mean emissivities. The observed mean emissivities are determined by a which is the average of 12 monthly Nimbus-5 (1.55 cm) microwave observations, and the Tm measured at the same locations. The calculated emissivities are about one-half of the observed values. The assumption that each snow crystal is an independent and equally effective scatterer, and the use of an approximation to ƒ(z), tend to over-estimate the effect of scattering. Therefore, a parameter multiplying γs (z) is used. The emissivities calculated with a single value of this empirical parameter for all seven locations agree well with the observed emissivities, showing that the microwave emissivity variations of dry polar urn can be characterised as a function of the crystal sizes. One optical depth corresponds to a typical fini depth of 5 m, but significant radiation emanates from up to 30 m. Since r(z) depends on the snow accumulation rate A and T m. the sensitivity of the emissivity to changes in T m or A are estimated using this semi-empirical theory. The results show that a one degree change or uncertainty in Tm is approximately equivalent to a 10% change in A, and that such a change will affect the emissivity by 0.003 to 0.014 or the T B by about 0.6 K to 3 K, depending on the location.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3