The Effect of Slope, Exposure and Mountain Screening on the Solar Radiation of McCall Glacier, Alaska: A Contribution to the International Hydrological Decade

Author:

Wendler Gerd,Ishikawa Nobuyoshi

Abstract

The McCall Glacier is located in the Brooks Range, north Alaska. Most of its slopes have a northerly exposure with an inclination between 5°and 15°. The reduction in direct solar radiation owing to this northerly exposure is small (1.7%) in summer (ablation period, solar declination 20°), as the reduction in radiation received on a north slope during the noon hours is mostly compensated by the increase of energy during the “night” hours, as the sun does not set at that latitude in summer. With the shortening of the solar path, the decrease in direct solar radiation as compared with a horizontal surface becomes more important. At the equinox the loss is 24.8%, and at a solar declination of —10° (20 October or 24 February) even higher with 32.6%.A further reduction in solar radiation is caused by the steep mountains, which surround the McCall Glacier. The duration of sunshine is reduced during the ablation period by nearly 40%, which, however, represents an energy loss of only 13.4%, as the screening effect of the mountains is most important with low solar angles, i.e. at times when the total energy received at the surface is small. The screening effect of the mountains becomes more severe with lower sun angles and shorter paths of the sun. During the equinox a loss in duration of 67.6%, and in energy of 55.7% is observed. For a solar declination of —10°, there is hardly any direct sunshine on the glacier at all. There is then a loss in duration of 93.6%, resulting in a loss of energy of 87.8%.Together, these two components reduce the direct solar radiation by about 15% in the ablation period, 67% at the equinox and more than 90% at a solar declination of —10°.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3