Abstract
AbstractIt is argued that in temperate mountain glaciers, waterways are subglacial. It is shown that the theory of Spring and Hutter (1981) for intraglacial flooded conduits leads to an equation for the grade line which differs from Röthlisberger’s (1972) only by negligible terms, and a slight modification of the exponent of the discharge. For a subglacial flooded waterway two important processes should instead be introduced: the enhancement of plastic deformation on the up-stream side of bumps, and the heat afforded by ground water (which in winter accounts for most of the discharge). The theory modified in this way explains why Röthlisberger had to adopt an unrealistic value for the rheological parameter of ice. It leads to the conclusion that in areas which are not overdeepened, most of the year subglacial waterways should remain not flooded and at atmospheric pressure. The case of overdeepening is examined. Finally the implications of this new model for glacier sliding theory are demonstrated.
Publisher
Cambridge University Press (CUP)
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Observing the subglacial hydrology network and its dynamics with a dense seismic array;Proceedings of the National Academy of Sciences;2021-07-06
2. Principles of Glacier Mechanics;2019-12-05
3. Index;Principles of Glacier Mechanics;2019-12-05
4. References;Principles of Glacier Mechanics;2019-12-05
5. Problems;Principles of Glacier Mechanics;2019-12-05