Stress-Generated Ice Crystals in a Nearly Isothermal Two-Phase System

Author:

LaChapelle E.

Abstract

The use of the two-phase system ice–water to illustrate the effects on equilibrium of both hydrostatic and non-hydrostatic stresses has been a recurrent theme in the history of thermodynamic theory. The effects of hydrostatic pressure on the melting point of ice are firmly established by theory and experiment. Those of non-hydrostatic stress are still a subject of debate today; several theorists have predicted ice re-crystallization under such stress, but the magnitude of any slight melting-point depression is not known with certainty. The recrystallization of ice caused by local variations in hydrostatic stress was predicted and experimentally confirmed over a century ago. Cavities deep within temperate glaciers provide a suitable environment for the occurrence of this latter phenomenon. A water-filled cavity intersected by a tunnel in nearly stagnant ice of the Blue Glacier, Washington State, U.S.A., was lined with large and unusual single ice crystals which apparently owe their origin to the effects of hydrostatic stress. Even the minute differences in pressure melting point around this cavity are adequate to remove the heat of fusion as ice forms within it. There is evidence that interstitial movement of melt water in the surrounding ice also contributes to the heat and mass transfer. The form of these crystals indicates that they grew into slightly supercooled water. It is suggested that this growth pattern is sustained by the existence of oriented stresses at the cavity walls.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3