Author:
Hou Tianyue,An Yi,Chang Qi,Ma Pengfei,Li Jun,Zhi Dong,Huang Liangjin,Su Rongtao,Wu Jian,Ma Yanxing,Zhou Pu
Abstract
We incorporate deep learning (DL) into tiled aperture coherent beam combining (CBC) systems for the first time, to the best of our knowledge. By using a well-trained convolutional neural network DL model, which has been constructed at a non-focal-plane to avoid the data collision problem, the relative phase of each beamlet could be accurately estimated, and then the phase error in the CBC system could be compensated directly by a servo phase control system. The feasibility and extensibility of the phase control method have been demonstrated by simulating the coherent combining of different hexagonal arrays. This DL-based phase control method offers a new way of eliminating dynamic phase noise in tiled aperture CBC systems, and it could provide a valuable reference on alleviating the long-standing problem that the phase control bandwidth decreases as the number of array elements increases.
Publisher
Cambridge University Press (CUP)
Subject
Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献