Abstract
The purpose of this paper is to provide explicit formulas for a variety of probabilistic quantities associated with an asymmetric random walk on a finite rectangular lattice with absorbing barriers. Quantities of interest include probabilities that a walker will exit the lattice onto some particular set of boundary states, the expected duration of the walk, and the expected number of visits to one state given a start in another. These quantities are shown to satisfy two-dimensional recurrence relations that are very similar in structure. In each case, the recurrence relations may be represented by matrix equations of the form X = AX + XB + C, where A and B are tridiagonal Toeplitz matrices. The spectral properties of A and B are investigated and used to provide solutions to this matrix equation. The solutions to the matrix equations then lead to solutions for the recurrence relations in very general cases.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献