A matrix equation approach to solving recurrence relations in two-dimensional random walks

Author:

Miller James W.

Abstract

The purpose of this paper is to provide explicit formulas for a variety of probabilistic quantities associated with an asymmetric random walk on a finite rectangular lattice with absorbing barriers. Quantities of interest include probabilities that a walker will exit the lattice onto some particular set of boundary states, the expected duration of the walk, and the expected number of visits to one state given a start in another. These quantities are shown to satisfy two-dimensional recurrence relations that are very similar in structure. In each case, the recurrence relations may be represented by matrix equations of the form X = AX + XB + C, where A and B are tridiagonal Toeplitz matrices. The spectral properties of A and B are investigated and used to provide solutions to this matrix equation. The solutions to the matrix equations then lead to solutions for the recurrence relations in very general cases.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact solution for random walks on the triangular lattice with absorbing boundaries;Journal of Physics A: Mathematical and General;2002-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3