Author:
Dębicki Krzysztof,Hashorva Enkelejd,Soja-Kukieła Natalia
Abstract
Let {X(s, t): s, t ≥ 0} be a centred homogeneous Gaussian field with almost surely continuous sample paths and correlation function r(s, t) = cov(X(s, t), X(0, 0)) such that r(s, t) = 1 - |s|α1
- |t|α2
+ o(|s|α1
+ |t|α2
), s, t → 0, with α1, α2 ∈ (0, 2], and r(s, t) < 1 for (s, t) ≠ (0, 0). In this contribution we derive an asymptotic expansion (as u → ∞) of P(sup(sn
1(u),tn
2(u)) ∈[0,x]∙[0,y]
X(s, t) ≤ u), where n
1(u)n
2(u) =
u
2/α1+2/α2
Ψ(u), which holds uniformly for (x, y) ∈ [A, B]2 with A, B two positive constants and Ψ the survival function of an N(0, 1) random variable. We apply our findings to the analysis of extremes of homogeneous Gaussian fields over more complex parameter sets and a ball of random radius. Additionally, we determine the extremal index of the discretised random field determined by X(s, t).
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献