Author:
Shanthikumar J. George,Yao David D.
Abstract
A family of random variables {X(θ)} parameterized by the parameter θ satisfies stochastic convexity (SCX) if and only if for any increasing and convex function f(x), Ef[X(θ)] is convex in θ
. This definition, however, has a major drawback for the lack of certain important closure properties. In this paper we establish the notion of strong stochastic convexity (SSCX), which implies SCX. We demonstrate that SSCX is a property enjoyed by a wide range of random variables. We also show that SSCX is preserved under random mixture, random summation, and any increasing and convex operations that are applied to a set of independent random variables. These closure properties greatly facilitate the study of parametric convexity of many stochastic systems. Applications to GI/G/1 queues, tandem and cyclic queues, and tree-like networks are discussed. We also demonstrate the application of SSCX in bounding the performance of certain systems.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献