Author:
Willmot Gordon E.,Lin Xiaodong
Abstract
Exponential bounds are derived for the tail probabilities of various compound distributions, generalizing the classical Lundberg inequality of insurance risk theory. Failure rate properties of the compounding distribution including log-convexity and log-concavity are considered in some detail. Mixed Poisson compounding distributions are also considered. A ruin theoretic generalization of the Lundberg inequality is obtained in the case where the number of claims process is a mixed Poisson process. An application to the M/G/1 queue length distribution is given.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献