Abstract
Consider an infinite capacity dam in which the input and release occur continuously in time. Write X(t) for the total input up to time t starting from X(0) = 0 at t = 0. Let Z(t) be the content of the dam at time t and R(u) (0 ≦ u < ∞) a release function such that in any interval of time (t, t + dt), the amount of water released is R(Z(t))dt + o(t) for any bounded realisation of the process {Z(t)}. Thus R(u) can be regarded as a “rate of release”.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献