Abstract
Place n arcs of equal lengths randomly on the circumference of a circle, and let C denote the proportion covered. The moments of C (moments of coverage) are found by solving a recursive integral equation, and a formula is derived for the cumulative distribution function. The asymptotic distribution of C for large n is explored, and is shown to be related to the exponential distribution.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献