A linear birth and death process under the influence of another process

Author:

Puri Prem S.

Abstract

Let {X 1 (t), X 2 (t), t ≧ 0} be a bivariate birth and death (Markov) process taking non-negative integer values, such that the process {X 2(t), t ≧ 0} may influence the growth of the process {X 1(t), t ≧ 0}, while the process X 2 (·) itself grows without any influence whatsoever of the first process. The process X 2 (·) is taken to be a simple linear birth and death process with λ 2 and µ 2 as its birth and death rates respectively. The process X 1 (·) is also assumed to be a linear birth and death process but with its birth and death rates depending on X 2 (·) in the following manner: λ (t) = λ 1 (θ + X 2 (t)); µ(t) = µ 1 (θ + X 2 (t)). Here λ i, µi and θ are all non-negative constants. By studying the process X 1 (·), first conditionally given a realization of the process {X 2 (t), t ≧ 0} and then by unconditioning it later on by taking expectation over the process {X 2 (t), t ≧ 0} we obtain explicit solution for G in closed form. Again, it is shown that a proper limit distribution of X 1 (t) always exists as t→∞, except only when both λ 1 > µ 1 and λ 2 > µ 2. Also, certain problems concerning moments of the process, regression of X 1 (t) on X 2 (t); time to extinction, and the duration of the interaction between the two processes, etc., are studied in some detail.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Master-Slave Stochastic Knapsack Modelling for Fully Dynamic Spectrum Allocation;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2012

2. A random allocation model for carrier-borne epidemics;Journal of Applied Probability;1993-12

3. A carrier-borne epidemic with multiple stages of infection;Journal of Applied Probability;1991-03

4. On two classes of interacting stochastic processes arising in cancer modeling;Advances in Applied Probability;1983-12

5. On Lotka–Volterra predator prey models;Journal of Applied Probability;1977-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3