Optimal stopping on trajectories and the ballot problem

Author:

Tamaki Mitsushi

Abstract

An urn contains m minus balls and p plus balls, and we draw balls from this urn one at a time randomly without replacement until we wish to stop. Let P n and M n denote the respective numbers of plus balls and minus balls drawn by time n and define Z 0 = 0, Z n = P n - M n , 1 ≤ nm + p. The main problem of this paper is to stop with maximum probability on the maximum of the trajectory formed by . This problem is closely related to the celebrated ballot problem, so that we obtain some identities concerning the ballot problem and then derive the optimal stopping rule explicitly. Some related modifications are also studied.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal double stopping of a Brownian bridge;Advances in Applied Probability;2015-12

2. Optimal double stopping of a Brownian bridge;Advances in Applied Probability;2015-12

3. The odds algorithm based on sequential updating and its performance;Advances in Applied Probability;2009-03

4. Takács’ Asymptotic Theorem and Its Applications: A Survey;Acta Applicandae Mathematicae;2008-10-22

5. Duration problem on trajectories;Stochastics;2007-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3