On the theory of birth, death and diffusion processes

Author:

Davis A. W.

Abstract

Several authors have recently discussed the asymptotic properties of stochastic populations which diffuse randomly throughout a given region. Sevast'yanov ([8], [9]) has investigated the extinction probability of a Markovian population in a compact region with an absorbing boundary, his analysis being in terms of “generation times”. Adke and Moyal have considered the spatial dispersion of a population which multiplies according to a simple time-dependent birth-and-death process and undergoes Gaussian diffusion on the real line ([2] and [3]) or on a finite interval with reflecting boundaries [1]. A serious limitation in Adke and Moyal's asymptotic results is that they are conditional upon a finite number of survivors. Moyal [7] has also obtained some basic formulae for a Markovian population diffusing through a general space.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of stepping-stone models in population dynamics;Advances in Applied Probability;1986-09

2. Stochastic spatial processes in biology: A concise historical survey;Stochastic Spatial Processes;1986

3. Stepping stone models for population growth;Journal of Applied Probability;1974-03

4. An immigration super-critical branching diffusion process;Journal of Applied Probability;1972-03

5. Some generalizations of Bailey's birth death and migration model;Advances in Applied Probability;1970

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3