On Exceedance Times for Some Processes with Dependent Increments

Author:

Asmussen Søren,Foss Sergey

Abstract

Let {Z n } n≥0 be a random walk with a negative drift and independent and identically distributed increments with heavy-tailed distribution, and let M = sup n≥0 Z n be its supremum. Asmussen and Klüppelberg (1996) considered the behavior of the random walk given that M > x for large x, and obtained a limit theorem, as x → ∞, for the distribution of the quadruple that includes the time τ = τ(x) to exceed level x, position Z τ at this time, position Z τ-1 at the prior time, and the trajectory up to it (similar results were obtained for the Cramér-Lundberg insurance risk process). We obtain here several extensions of this result to various regenerative-type models and, in particular, to the case of a random walk with dependent increments. Particular attention is given to describing the limiting conditional behavior of τ. The class of models includes Markov-modulated models as particular cases. We also study fluid models, the Björk-Grandell risk process, give examples where the order of τ is genuinely different from the random walk case, and discuss which growth rates are possible. Our proofs are purely probabilistic and are based on results and ideas from Asmussen, Schmidli and Schmidt (1999), Foss and Zachary (2002), and Foss, Konstantopoulos and Zachary (2007).

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximum of Random Walk;An Introduction to Heavy-Tailed and Subexponential Distributions;2013

2. Densities and Local Probabilities;An Introduction to Heavy-Tailed and Subexponential Distributions;2013

3. Subexponential Distributions;An Introduction to Heavy-Tailed and Subexponential Distributions;2013

4. Heavy-Tailed and Long-Tailed Distributions;An Introduction to Heavy-Tailed and Subexponential Distributions;2013

5. Introduction;An Introduction to Heavy-Tailed and Subexponential Distributions;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3