Some Time-Dependent Properties of Symmetric M/G/1 Queues
-
Published:2005-03
Issue:01
Volume:42
Page:223-234
-
ISSN:0021-9002
-
Container-title:Journal of Applied Probability
-
language:en
-
Short-container-title:J. Appl. Probab.
Author:
Kella Offer,Zwart Bert,Boxma Onno
Abstract
We consider an M/G/1 queue that is idle at time 0. The number of customers sampled at an independent exponential time is shown to have the same geometric distribution under the preemptive-resume last-in-first-out and the processor-sharing disciplines. Hence, the marginal distribution of the queue length at any time is identical for both disciplines. We then give a detailed analysis of the time until the first departure for any symmetric queueing discipline. We characterize its distribution and show that it is insensitive to the service discipline. Finally, we study the tail behavior of this distribution.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献