On the single-server queue with non-homogeneous Poisson input and general service time

Author:

Hasofer A. M.

Abstract

In this paper, a single-server queue with non-homogeneous Poisson input and general service time is considered. Particular attention is given to the case where the parameter of the Poisson input λ(t) is a periodic function of the time. The approach is an extension of the work of Takács and Reich . The main result of the investigation is that under certain conditions on the distribution of the service time, the form of the function λ(t) and the distribution of the waiting time at t = 0, the probability of a server being idle P 0 and the Laplace transform Ω of the waiting time are both asymptotically periodic in t. Putting where b(t) is a periodic function of time, it is shown that both P o and Ω can be expanded in a power series in z, and a method for calculating explicitly the asymptotic values of the leading terms is obtained. In many practical queueing problems, it is expected that the probability of arrivals will vary periodically. For example, in restaurants or at servicestations arrivals are more probable at rush hours than at slack periods, and rush hours are repeated day after day

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electricity Trading Agent for EV-enabled Parking Lots;Lecture Notes in Business Information Processing;2017

2. On periodic distribution of waiting-time process;Stability Problems for Stochastic Models;1985

3. The discrete-time single-server queue with time-inhomogeneous compound Poisson input and general service time distribution;Journal of Applied Probability;1978-09

4. Limit theorems for periodic queues;Journal of Applied Probability;1977-09

5. Busy periods in time-dependent M/G/1 queues;Advances in Applied Probability;1976-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3