Author:
Gupta Vijay K.,Mesa Oscar J.,Waymire E.
Abstract
The length of the main channel in a river network is viewed as an extreme value statistic L on a randomly weighted binary rooted tree having M sources. Questions of concern for hydrologic applications are formulated as the construction of an extreme value theory for a dependence which poses an interesting contrast to the classical independent theory. Equivalently, the distribution of the extinction time for a binary branching process given a large number of progeny is sought. Our main result is that in the case of exponentially weighted trees, the conditional distribution of n–1/2
L given M = n is asymptotically distributed as the maximum of a Brownian excursion. When taken with an earlier result of Kolchin (1978), this makes the maximum of the Brownian excursion a tree-dependent extreme value distribution whose domain of attraction includes both the exponentially distributed and almost surely constant weights. Moment computations are given for the Brownian excursion which are of independent interest.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献