Author:
Ball Frank,Yeo Geoffrey F.
Abstract
We consider lumpability for continuous-time Markov chains and provide a simple probabilistic proof of necessary and sufficient conditions for strong lumpability, valid in circumstances not covered by known theory. We also consider the following marginalisability problem. Let {X{t)} = {(X
1(t), X
2(t), · ··, Xm
(t))} be a continuous-time Markov chain. Under what conditions are the marginal processes {X
1(t)}, {X
2(t)}, · ··, {Xm
(t)} also continuous-time Markov chains? We show that this is related to lumpability and, if no two of the marginal processes can jump simultaneously, then they are continuous-time Markov chains if and only if they are mutually independent. Applications to ion channel modelling and birth–death processes are discussed briefly.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献