Abstract
The paper studies the formally defined stochastic process
where {tj
} is a homogeneous Poisson process in Euclidean n-space En
and the a.e. finite Em
-valued function f(·) satisfies |f(t)| = g(t) (all |t | = t), g(t) ↓ 0 for all sufficiently large t → ∞, and with either m = 1, or m = n and f(t)/g(t) =t/t. The convergence of the sum at (*) is shown to depend on
(i)
(ii)
(iii)
. Specifically, finiteness of (i) for sufficiently large X implies absolute convergence of (*) almost surely (a.s.); finiteness of (ii) and (iii) implies a.s. convergence of the Cauchy principal value of (*) with the limit of this principal value having a probability distribution independent of t when the limit in (iii) is zero; the finiteness of (ii) alone suffices for the existence of this limiting principal value at t = 0.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献