Abstract
We present two theorems that provide simple iterative solutions of special systems of differential-difference equations. We show as examples of the theorems the simple stochastic epidemic (cf. Bailey, 1957, p. 39, and Bailey, 1963) and the general stochastic epidemic (cf. Bailey, 1957; Gani, 1965; and Siskind, 1965), in each of which we let the initial distribution of the number of uninfected susceptibles and the number of infectives be arbitrary but assume the total population size bounded. In all of the references cited above the methods of solution involve solving a corresponding partial differential equation, whereas we deal directly with the original system of ordinary differential-difference equations. Furthermore in the cited references the authors begin at time t = 0 with a population having a fixed number of uninfected susceptibles and a fixed number of infectives. For the simple stochastic epidemic with arbitrary initial distribution we provide solutions not obtainable by the results given by Bailey (1957 or 1963). For the general stochastic epidemic, if we use the results of Gani or Siskind, then the solution of the problem having an arbitrary initial distribution would involve additional steps that would sum proportionally-weighted conditional results.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献