Abstract
A distribution F of a non-negative random variable belongs to the subexponential family of distributions S if 1 – F
(2)(x) ~ 2(1 – F(x)) as x →∞. This family is of considerable interest in branching processes, queueing theory, transient renewal theory and infinite divisibility theory. Much is known about the kind of distributions that belong to S but the question of whether S is closed under convolution has remained unresolved for some time. This paper contains an example which demonstrates that S is not in fact closed.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献