Abstract
We consider the Bienaymé–Galton–Watson model of population growth in which immigration is allowed. When the mean number of offspring per individual, α, satisfies 1 < α < ∞, a well-known result proves that a normalised version of the size of the n th generation converges to a finite, positive random variable iff a certain condition is satisfied by the immigration distribution. In this paper we obtain some non-linear limit theorems when this condition is not satisfied. Results are also given for the explosive case, α = ∞.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献