Abstract
Consider an absolutely continuous distribution on [0, ∞) with finite meanμand hazard rate functionh(t) ≤bfor allt. Forbμclose to 1, we would expectFto be approximately exponential. In this paper we obtain sharp bounds for the Kolmogorov distance betweenFand an exponential distribution with meanμ, as well as betweenFand an exponential distribution with failure rateb. We apply these bounds to several examples. Applications are presented to geometric convolutions, birth and death processes, first-passage times, and to decreasing mean residual life distributions.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献