Some results on two-armed bandits when both projects vary

Author:

O'Flaherty Brendan

Abstract

In the multi-armed bandit problem, the decision-maker must choose each period a single project to work on. From the chosen project she receives an immediate reward that depends on the current state of the project. Next period the chosen project makes a stochastic transition to a new state, but projects that are not chosen remain in the same state. What happens in a two-armed bandit context if projects not chosen do not remain in the same state? We derive two sufficient conditions for the optimal policy to be myopic: either the transition function for chosen projects has in a certain sense uniformly stronger stochastic dominance than the transition function for unchosen projects, or both transition processes are normal martingales, the variance of which is independent of the history of process choices.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A class of bandit problems yielding myopic optimal strategies;Journal of Applied Probability;1992-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3