Author:
Chen May-Ru,Hsiau Shoou-Ren
Abstract
In this paper a two-person red-and-black game is investigated. We suppose that, at every stage of the game, player I's win probability, f, is a function of the ratio of his bet to the sum of both players' bets. Two results are given: (i) if f is convex then a bold strategy is optimal for player I when player II plays timidly; and (ii) if f satisfies f(s)f(t) ≤ f(st) then a timid strategy is optimal for player II when player I plays boldly. These two results extend two formulations of red-and-black games proposed by Pontiggia (2005), and also provide a sufficient condition to ensure that the profile (bold, timid) is the unique Nash equilibrium for players I and II. Finally, we give a counterexample to Pontiggia's conjecture about a proportional N-person red-and-black game.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献