Abstract
If on a long homogeneous highway there is no interaction between cars, then, under a wide range of conditions, an initial distribution of cars will in the course of time tend toward that of a Poisson process with statistically independent velocities for the cars in any finite interval of highway. Here we will generalize this known property to obtain the following. Suppose cars do interact in such a way as to delay a car when it passes another, but the density of cars is so low that we can neglect simultaneous interactions between three or more cars. There will again be equilibrium distributions of cars to which general classes of initial distributions will converge. These equilibrium distributions are superpositions of two statistically independent processes, one a Poisson process of single free cars with statistically independent velocities, and the other a Poisson process of interacting pairs of cars with various velocities. In the limit of zero interaction, the density of pairs vanishes leaving only the Poisson process of single cars as a special case. To the same order of approximation, including the first order effects of interactions, the headway distribution between consecutive cars will still have exponential tail outside the range of interaction.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On single-lane roads;Advances in Applied Probability;1989-03
2. Further results on single-lane traffic flow;Journal of Applied Probability;1980-06
3. Convergence to equilibrium in a traffic model with restricted passing;Journal of Applied Probability;1979-12
4. Conditional cluster point processes in a traffic model;Advances in Applied Probability;1978-06
5. Low density traffic streams;Advances in Applied Probability;1972-04