Abstract
We prove a sharp upper bound on the number of patterns that can be stored in the Hopfield model if the stored patterns are required to be fixed points of the gradient dynamics. We also show corresponding bounds on the one-step convergence of the sequential gradient dynamics. The bounds coincide with the known lower bounds and confirm the heuristic expectations. The proof is based on a crucial idea of Loukianova (1997) using the negative association properties of some random variables arising in the analysis.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献