Abstract
Moments of the measure of the intersection of a given set with the union of random sets may be called moments of coverage. These moments specified for the case of independent random sets in the Euclidean space, were treated by several authors. Kolmogorov (1933) and Robbins (1944), (1945), (1947) derived transformation formulas for the moments of coverage under some specified conditions. Robbins' formula was applied by Robbins (1945), Santaló (1947) and Garwood (1947) to computations of expectations and variances of coverage in the cases of spheres and intervals in 2-dimensional and in n-dimensional Euclidean space. The computations were carried out under the assumption of a simple distribution function for the centers of the covering figures (a homogeneous distribution in most of the cases and a normal one in some of them). Neyman and Bronowski (1945) computed by a different method the variance of coverage for some specific cases in the Euclidean plane.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献