Author:
Gulliver P,Cook G T,MacKenzie A B,Naysmith P,Anderson R
Abstract
The Sellafield nuclear fuel reprocessing plant on the northwest coast of England is the largest source of anthropogenic radiocarbon to the UK coastal environment. In a mid-1990s study of 14C distribution around the UK coast, the pattern of dilution with increasing distance from Sellafield appeared to be perturbed by anomalously high 14C activities in marine biota in the coastal environment of northeast England. This present study was undertaken during 1998 and 1999 to determine whether this 14C enhancement was due to Sellafield or the nuclear power plants on the east coast. Seawater, seaweed (Fucus sp.), and mussel (Mytilus edulis) samples that were collected from the vicinity of the Torness and Hartlepool advanced gas-cooled reactor (AGR) nuclear power stations were all enhanced above the contemporary regional background activity derived from natural production and atmospheric nuclear weapons testing. We used previously published dilution factors and transfer times for 99Tc between Sellafield and various points on the UK coast to determine likely Sellafield-derived 14C contributions to the activities at the nuclear power plant sites. The results suggest that the activities observed at Torness, which are only marginally enhanced above the natural background activity, are possibly due to discharges from Sellafield; however, the significant 14C enhancements at Hartlepool are not Sellafield-derived. Furthermore, since both reactors have the same fundamental design, the low activities at the Torness AGR imply that the activities at Hartlepool are not from the AGR, suggesting that there is an input of 14C to the marine environment in the vicinity of Hartlepool which is probably non-nuclear-power related. However, there is no other authorized site in the area that could account for the observed 14C enrichments; therefore, further research is required to ascertain the source of this 14C.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Archaeology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献