Status of Sample Combustion and Graphitization Lines at INFN-LABEC, Florence

Author:

Fedi M E,Bernardoni V,Caforio L,Calzolai G,Carraresi L,Manetti M,Taccetti F,Mandò P A

Abstract

Since installation of the new accelerator at INFN-LABEC in Florence in 2004, the workload has progressively increased in the radiocarbon dating laboratory, requiring a faster sample preparation throughput and greater versatility to allow for a larger variety of treated materials. The “standard” sample preparation line is based on an elemental analyzer (EA) for the combustion of the pretreated samples, and a vacuum line where the CO2 is collected and then converted to graphite. This line has been recently redesigned while maintaining the EA, since this instrument provides us reliable and fast sample combustion and separation of gases. The volumes were optimized and all the mechanical parts (e.g. the fittings) were changed in order to improve the vacuum level, thus decreasing the possibility of contamination; finally, the number of graphitization reactors was doubled (from 4 to 8). In those rare cases involving samples characterized by a complex nearly graphitic structure (e.g. burnt residues), the EA might not guarantee a complete combustion. For these samples, we successfully tested the new sample preparation line that has been recently installed at LABEC and especially dedicated to aerosol samples. This line is equipped with a custom-made combustion oven able to heat to 1000 °C. The subsequent gas separation is accomplished by chemical and thermal traps. As an example, the dating of organic matter collected from an Etruscan bronze statue will be presented and discussed.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Analytical Characterization and Radiocarbon Dating of a Roman Egyptian Mummy Portrait;Molecules;2021-08-30

2. LABEC, the INFN ion beam laboratory of nuclear techniques for environment and cultural heritage;The European Physical Journal Plus;2021-04

3. DIRECT RADIOCARBON DATING OF CHARCOAL-BASED INK IN PAPYRI: A FEASIBILITY STUDY;Radiocarbon;2020-09-23

4. The new sample preparation line for radiocarbon measurements at the INFN Bari Laboratory;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2019-08

5. A C-14 beam monitor using silicon solid state sensor for cultural heritage;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2019-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3