William H. Bragg's Corpuscular Theory of X-Rays and γ-Rays

Author:

Stuewer Roger H.

Abstract

The modern corpuscular theory of radiation was born in 1905 when Einstein advanced his light quantum hypothesis; and the steps by which Einstein's hypothesis, after years of profound scepticism, was finally and fully vindicated by Arthur Compton's 1922 scattering experiments constitutes one of the most stimulating chapters in the history of recent physics. To begin to appreciate the complexity of this chapter, however, it is only necessary to emphasize an elementary but very significant point, namely, that while Einstein based his arguments for quanta largely on the behaviour of high-frequency black body radiation or ultra-violet light, Compton experimented with X-rays. A modern physicist accustomed to picturing ultra-violet light and X-radiation as simply two adjacent regions in the electromagnetic spectrum might regard this distinction as hair-splitting. But who in 1905 was sure that X-rays and γ-rays are far more closely related to ultra-violet light than to α-particles, for example ? This only became evident after years of painstaking research, so that moving without elaboration from Einstein's hypothesis to Compton's experiments automatically eliminates from consideration an important segment of history—a segment in which a major role was played by William Henry Bragg.

Publisher

Cambridge University Press (CUP)

Subject

History and Philosophy of Science,History

Reference122 articles.

1. National Bureau of Standards Circular Number 542 (1953).

2. Nature, cvii (1921), 374.

3. Proc. R. Soc., lxxxviii (1913), 436.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. William H. Bragg: Earliest Haven for Women X-ray Crystallographers;Allies of Pioneering Women Chemists;2024-09-13

2. Empirical techniques and the accuracy of scientific representations;Studies in History and Philosophy of Science;2022-08

3. X-ray computed tomography: from medical imaging to dimensional metrology;Precision Engineering;2019-11

4. The legacies of the Royal Institution;Physics Today;2018-08

5. The Nobel Science: One Hundred Years of Crystallography;Interdisciplinary Science Reviews;2015-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3