Abstract
The discrete-time G/GI/∞ queue model is explored. Jobs arrive to an infinite-server queuing system following an arbitrary input process X; job sizes are general independent and identically distributed random variables. The system's output process Y (of job departures) and queue process N (tracking the number of jobs present in the system) are analyzed. Various statistics of the stochastic maps X↦ Y and X↦ N are explicitly obtained, including means, variances, autocovariances, cross-covariances, and multidimensional probability generating functions. In the case of stationary inputs, we further compute the spectral densities of the stochastic maps, characterize the fixed points (in the L2 sense) of the input–output map, precisely determine when the output and queue processes display either short-ranged or long-ranged temporal dependencies, and prove a decomposition result regarding the intrinsic L2 structure of general stationary G/GI/∞ systems.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Reference25 articles.
1. Some statistical models related with series of events;Cox;Journal of the Royal Statistical Society B,1955
2. On stochastic recursive equations and infinite server queues
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献