Abstract
We propose two random network models for complex networks, which are treelike and always grow very fast. One is the uniform model and the other is the preferential attachment model, and both of them depends on a parameter 0<p<1. We first briefly discuss the network sizes, each of which can be corresponding to a supercritical branching process. And then we mainly study the degree distributions of both models. The asymptotic degree distribution of the first one with any parameter 0<p<1 is a geometric distribution with parameter 1/2, whereas that of the second one, which depends on p, can be uniquely determined by a functional equation of its probability generating function.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An evolving pseudofractal network model;Communications in Statistics - Theory and Methods;2024-01-23