Abstract
It is well known that in the case of a Poisson process with constant intensity function the interarrival times are independent and identically distributed, each having exponential distribution. We study this problem when the intensity function is monotone. In particular, we show that in the case of a nonhomogeneous Poisson process with decreasing (increasing) intensity the interarrival times are increasing (decreasing) in the hazard rate ordering sense and they are also jointly likelihood ratio ordered (cf. Shanthikumar and Yao, 1991, Bivariate characterization of some stochastic order relations, Advances in Applied Probability 23: 642–659). This result is stronger than the usual stochastic ordering between the successive interarrival times. Also in this case, the interarrival times are conditionally increasing in sequence and, as a consequence, they are associated. We also consider the problem of comparing two nonhomogeneous Poisson processes in terms of the ratio of their intensity functions and establish some results on the successive number of events from one process occurring between two consecutive occurrences from the second process.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献