Abstract
AbstractWe consider a two-stage service system with two types of servers, namely subordinates who perform the first-stage service and supervisors who have their own responsibilities in addition to collaborating with the subordinates on the second-stage service. Rewards are earned when first- or second-stage service is completed and when supervisors finish one of their own responsibilities. Costs are incurred when impatient customers abandon without completing the second-stage service. Our problem is to determine how the supervisors should distribute their time between their joint work with the subordinates and their own responsibilities. Under the assumptions that service times at both stages are exponentially distributed and that the customers waiting for second-stage service abandon after an exponential amount of time, we prove that one of two policies will maximize the long-run average profit. Namely, it is optimal for supervisors to start collaborating with subordinates either when subordinates can no longer serve new customers or as soon as there is a customer ready for second-stage service. Furthermore, we show that the optimality condition is a simple threshold on the system parameters. We conclude by proving that pooling supervisors (and their associated subordinates) improves system performance, but with limited returns as more supervisors are pooled.
Funder
National Science Foundation
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献