ASYMPTOTIC ANALYSIS OF PERES’ ALGORITHM FOR RANDOM NUMBER GENERATION

Author:

Lim Zhao GingORCID,Liao Chen-Tuo,Yao Yi-Ching

Abstract

von Neumann [(1951). Various techniques used in connection with random digits. National Bureau of Standards Applied Math Series 12: 36–38] introduced a simple algorithm for generating independent unbiased random bits by tossing a (possibly) biased coin with unknown bias. While his algorithm fails to attain the entropy bound, Peres [(1992). Iterating von Neumann's procedure for extracting random bits. The Annals of Statistics 20(1): 590–597] showed that the entropy bound can be attained asymptotically by iterating von Neumann's algorithm. Let $b(n,p)$ denote the expected number of unbiased bits generated when Peres’ algorithm is applied to an input sequence consisting of the outcomes of $n$ tosses of the coin with bias $p$ . With $p=1/2$ , the coin is unbiased and the input sequence consists of $n$ unbiased bits, so that $n-b(n,1/2)$ may be referred to as the cost incurred by Peres’ algorithm when not knowing $p=1/2$ . We show that $\lim _{n\to \infty }\log [n-b(n,1/2)]/\log n =\theta =\log [(1+\sqrt {5})/2]$ (where $\log$ is the logarithm to base $2$ ), which together with limited numerical results suggests that $n-b(n,1/2)$ may be a regularly varying sequence of index $\theta$ . (A positive sequence $\{L(n)\}$ is said to be regularly varying of index $\theta$ if $\lim _{n\to \infty }L(\lfloor \lambda n\rfloor )/L(n)=\lambda ^\theta$ for all $\lambda > 0$ , where $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$ .) Some open problems on the asymptotic behavior of $nh(p)-b(n,p)$ are briefly discussed where $h(p)=-p\log p- (1-p)\log (1-p)$ denotes the Shannon entropy of a random bit with bias $p$ .

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3