Author:
Altman Eitan,Yechiali Uri
Abstract
A system is operating as an M/M/∞ queue. However, when it becomes empty, it is assigned to perform another task, the duration U of which is random. Customers arriving while the system is unavailable for service (i.e., occupied with a U-task) become impatient: Each individual activates an “impatience timer” having random duration T such that if the system does not become available by the time the timer expires, the customer leaves the system never to return. When the system completes a U-task and there are waiting customers, each one is taken immediately into service. We analyze both multiple and single U-task scenarios and consider both exponentially and generally distributed task and impatience times. We derive the (partial) probability generating functions of the number of customers present when the system is occupied with a U-task as well as when it acts as an M/M/∞ queue and we obtain explicit expressions for the corresponding mean queue sizes. We further calculate the mean length of a busy period, the mean cycle time, and the quality of service measure: proportion of customers being served.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献