ASYMPTOTICALLY OPTIMAL MULTI-ARMED BANDIT POLICIES UNDER A COST CONSTRAINT

Author:

Burnetas Apostolos,Kanavetas Odysseas,Katehakis Michael N.

Abstract

We consider the multi-armed bandit problem under a cost constraint. Successive samples from each population are i.i.d. with unknown distribution and each sample incurs a known population-dependent cost. The objective is to design an adaptive sampling policy to maximize the expected sum ofnsamples such that the average cost does not exceed a given bound sample-path wise. We establish an asymptotic lower bound for the regret of feasible uniformly fast convergent policies, and construct a class of policies, which achieve the bound. We also provide their explicit form under Normal distributions with unknown means and known variances.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Reference50 articles.

1. Multi-Armed Bandit Problems

2. Approximately optimal adaptive learning in opportunistic spectrum access

3. Near-optimal reinforcement learning in factored MDPs;Osband;Advances in Neural Information Processing Systems Conference,2014

4. Li L. , Munos R. , & Szepesvári C. (2014). On minimax optimal offline policy evaluation. arXiv:1409.3653.

5. Least-squares policy iteration;Lagoudakis;The Journal of Machine Learning Research,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning and data-driven optimization in queues with strategic customers;Queueing Systems;2022-04

2. Tomography Based Learning for Load Distribution Through Opaque Networks;IEEE Open Journal of the Communications Society;2021

3. An optimal selection for ensembles of influential projects;Annals of Operations Research;2020-02-13

4. Cost-Aware Cascading Bandits;IEEE Transactions on Signal Processing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3