INEQUALITIES FOR THE DEPENDENT GAUSSIAN NOISE CHANNELS BASED ON FISHER INFORMATION AND COPULAS

Author:

Asgari Fatemeh,Alamatsaz Mohammad HosseinORCID,Khoolenjani Nayereh Bagheri

Abstract

AbstractConsidering the Gaussian noise channel, Costa [4] investigated the concavity of the entropy power when the input signal and noise components are independent. His argument was connected to the first-order derivative of the Fisher information. In real situations, however, the noise can be highly dependent on the main signal. In this paper, we suppose that the input signal and noise variables are dependent. Then, some well-known copula functions are used to define their dependence structure. The first- and second-order derivatives of Fisher information of the model are obtained. Then, by using these derivatives, we will generalize two inequalities based on the Fisher information and a functional that is closely associated to Fisher information for the case when the input signal and noise variables are dependent. We will also show that the previous results for the independent case are recovered as special cases of our result. Several applications are provided to support the usefulness of our results. Finally, the channel capacity of the Gaussian noise channel model with dependent signal and noise is studied.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3