PERFORMANCE OF NON-COOPERATIVE ROUTING OVER PARALLEL NON-OBSERVABLE QUEUES

Author:

Brun Olivier

Abstract

Autonomic computing is emerging as a significant new approach to the design of computer services. Its goal is the development of services that are able to manage themselves with minimal direct human intervention, and, in particular, are able to sense their environment and to tune themselves to meet end-user needs. However, the impact on performance of the interaction between multiple uncoordinated self-optimizing services is not yet well understood. We present some recent results on a non-cooperative load-balancing game which help to better understand the result of this interaction. In this game, users generate jobs of different services, and the jobs have to be processed on one of the servers of a computing platform. Each service has its own dispatcher which probabilistically routes jobs to servers so as to minimize the mean processing cost of its own jobs. We first investigate the impact of heterogeneity in the amount of incoming traffic routed by dispatchers and present a result stating that, for a fixed amount of total incoming traffic, the worst-case overall performance occurs when each dispatcher routes the same amount of traffic. Using this result we then study the so-called Price of Anarchy (PoA), an oft-used worst-case measure of the inefficiency of non-cooperative decentralized architectures. We give explicit bounds on the PoA for cost functions representing the mean delay of jobs when the service discipline is PS or SRPT. These bounds indicate that significant performance degradations can result from the selfish behavior of self-optimizing services. In practice, though, the worst-case scenario may occur rarely, if at all. Some recent results suggest that for the game under consideration the PoA is an overly pessimistic measure that does not reflect the performance obtained in most instances of the problem.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3