ON DETERMINISTIC FINITE STATE MACHINES IN RANDOM ENVIRONMENTS

Author:

Ratsaby Joel

Abstract

AbstractThe general problem under investigation is to understand how the complexity of a system which has been adapted to its random environment affects the level of randomness of its output (which is a function of its random input). In this paper, we consider a specific instance of this problem in which a deterministic finite-state decision system operates in a random environment that is modeled by a binary Markov chain. The system interacts with it by trying to match states of inactivity (represented by 0). Matching means that the system selects the (t + 1)th bit from the Markov chain whenever it predicts at time t that the environment will take a 0 value. The actual value at time t + 1 may be 0 or 1 thus the selected sequence of bits (which forms the system's output) may have both binary values. To try to predict well, the system's decision function is inferred based on a sample of the random environment.We are interested in assessing how non-random the output sequence may be. To do that, we apply the adapted system on a second random sample of the environment and derive an upper bound on the deviation between the average number of 1 bit in the output sequence and the probability of a 1. The bound shows that the complexity of the system has a direct effect on this deviation and hence on how non-random the output sequence may be. The bound takes the form of $O(\sqrt {(2^k/n} ))$ where 2k is the complexity of the system and n is the length of the second sample.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feedback stabilization of probabilistic finite state machines based on deep Q-network;Frontiers in Computational Neuroscience;2024-05-02

2. Robust Control: From Continuous-State Systems to Finite State Machines;IEEE Transactions on Automation Science and Engineering;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3