On approximation of the analytic fixed finite time large t probability distributions in an extreme renewal process with no-mean inter-renewals

Author:

Brill Percy H.ORCID,Huang Mei LingORCID

Abstract

Abstract We consider an extreme renewal process with no-mean heavy-tailed Pareto(II) inter-renewals and shape parameter $\alpha$ where $0<\alpha \leq 1$ . Two steps are required to derive integral expressions for the analytic probability density functions (pdfs) of the fixed finite time $t$ excess, age, and total life, and require extensive computations. Step 1 creates and solves a Volterra integral equation of the second kind for the limiting pdf of a basic underlying regenerative process defined in the text, which is used for all three fixed finite time $t$ pdfs. Step 2 builds the aforementioned integral expressions based on the limiting pdf in the basic underlying regenerative process. The limiting pdfs of the fixed finite time $t$ pdfs as $t\rightarrow \infty$ do not exist. To reasonably observe the large $t$ pdfs in the extreme renewal process, we approximate them using the limiting pdfs having simple well-known formulas, in a companion renewal process where inter-renewals are right-truncated Pareto(II) variates with finite mean; this does not involve any computations. The distance between the approximating limiting pdfs and the analytic fixed finite time large $t$ pdfs is given by an $L_{1}$ metric taking values in $(0,1)$ , where “near $0$ ” means “close” and “near $1$ ” means “far”.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3