Abstract
In this paper, we study limit behavior for a Markov-modulated binomial counting process, also called a binomial counting process under regime switching. Such a process naturally appears in the context of credit risk when multiple obligors are present. Markov-modulation takes place when the failure/default rate of each individual obligor depends on an underlying Markov chain. The limit behavior under consideration occurs when the number of obligors increases unboundedly, and/or by accelerating the modulating Markov process, called rapid switching. We establish diffusion approximations, obtained by application of (semi)martingale central limit theorems. Depending on the specific circumstances, different approximations are found.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability