Abstract
AbstractImagine, you enter a grocery store to buy food. How many people do you overlap with in this store? How much time do you overlap with each person in the store? In this paper, we answer these questions by studying the overlap times between customers in the infinite server queue. We compute in closed form the steady-state distribution of the overlap time between a pair of customers and the distribution of the number of customers that an arriving customer will overlap with. Finally, we define a residual process that counts the number of overlapping customers that overlap in the queue for at least $\delta$ time units and compute its distribution.
Funder
Division of Mathematical Sciences
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献